Mars. Exploration goals.
Besides finding life.
Like any new NASA mission, Perseverance is also a platform for demonstrating some of the most state-of-the-art technology in the solar system.
One is MOXIE, a small device that seeks to turn the carbon-dioxide-heavy Martian atmosphere into usable oxygen through electrolysis (using an electric current to separate elements). This has been done before on Earth, but it’s important to prove that it works on Mars if we hope humans can live there one day. Oxygen production could not only provide a Martian colony with breathable air; it could also be used to generate liquid oxygen for rocket fuel. MOXIE should have about 10 opportunities to make oxygen during Perseverance’s first two years, during different seasons and times of the day. It will run for about an hour each time, producing 6 to 10 grams of oxygen per session.
There’s also Ingenuity, a 1.8-kilogram helicopter that could take the first powered controlled flight ever made on another planet. Deploying Ingenuity (which is stowed underneath the rover) will take about 10 days. Its first flight will be about three meters into the air, where it will hover for about 20 seconds. If it successfully flies in Mars’s ultra-thin atmosphere (1% as dense as Earth’s), Ingenuity will have many more chances to fly elsewhere. Two cameras on the helicopter will help us see exactly what it sees. On its own, Ingenuity won’t be critical for exploring Mars, but its success could pave the way for engineers to think about new ways to explore other planets when a rover or lander will not suffice.
Neither of those demonstrations will be the marquee moment for Perseverance. The highlight of the mission, which may take 10 years to realize, will be the return of Martian soil samples to Earth. Perseverance will drill into the ground and collect more than 40 samples, most of which will be returned to Earth as part of a joint NASA-ESA mission. NASA officials suggest that this mission could come in either 2026 or 2028, which means the earliest they may be returned to Earth is 2031.
Collecting such samples is no small feat. Robotics company Maxar built the sample handling arm (SHA) that controls the drilling mechanism to collect cores of Martian soil from the ground. The company had to build something that worked autonomously, with hardware and electronics that could withstand temperature swings from -73 °C (100 °F) at night to more than 20 °C (70 °F) during the day. And most important, it had to build something that could contend with the Martian dust.
“When you’re talking about a moving mechanism that has to apply force and go exactly where you need it to go, you can’t have a tiny little dust particle stopping the whole show,” says Lucy Condakchian, the general manager of robotics at Maxar. SHA, located underneath the rover itself, is exposed to a ton of dust kicked up by the rover’s wheels or by drilling. Various innovations should help it withstand this problem, including new lubricants and a metallic accordion design for its lateral (front-to-back) movement.
Before any of those things are proved to work, however, the rover needs to make it to Mars in one piece.
“It never gets old,” says Condakchian. “I’m just as nervous as I’ve been on the previous missions. But it’s a good nervous—an excitement to be doing this again.”